
DATE: Wednesday, Dec. 17,  2003

PAGE NO.: 

COURSE NO.: 24.781

TIME: 2:00 - 5:00 P.M., 3 HOURS

COURSE NAME: COMPUTATIONAL ELECTROMAGNETICS

EXAMINER: Joe LoVetriFINAL EXAMINATION: INTRAMURAL

1 of 11
LOCATION: Machine’s Lab., Engineering Bldg.

General Instructions:

1) This is a closed-book exam. Calculators are permitted, but sharing of calculators or any
other material between students is not permitted.

2) You are allowed a single 8.5” X 11” sheet of paper which may contain handwriting on both
sides. Photocopied sheets are not allowed.

3) This is a multiple-choice exam: circle the letter of the appropriate answer(s) for each
question.

4) Questions may have no right answer, one right answer, or more than one right answer.
5) The total number of right answers on this exam is 42. Do not circle more than this number

of answers. One mark will be subtracted for each circled answer in excess of 42. For
example if you circle 50 answers then 8 marks will be subtracted.

6) Use the back of each page to do any rough calculations. If you require more scrap
paper ask and I will give you some.

7) Make sure that your name, student number, and signature are written on this page.

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

TOTAL: / 42

STUDENT NUMBER

STUDENT’S SIGNATURE ON THIS LINE

PRINT NAME IN FULL ON THIS LINE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING



DATE: Wednesday, Dec. 17,  2003

PAGE NO.: 

COURSE NO.: 24.781

TIME: 2:00 - 5:00 P.M., 3 HOURS

COURSE NAME: COMPUTATIONAL ELECTROMAGNETICS

EXAMINER: Joe LoVetriFINAL EXAMINATION: INTRAMURAL

2 of 11
LOCATION: Machine’s Lab., Engineering Bldg.

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

1.  Consider the 1-D Maxwell’s equations written in conservation-law form:

where the solution vector u is given by

, and , , , .

Numerical dispersion occurs in the Yee algorithm solution of this system

a) if we choose 

b) if we choose 

c) if we choose 

d) for all choices of 

e) only if we have less than 10 spatial cells per wavelength

f) none of the above.

2. The Successive Over-Relaxation method

a) is a method of discretizing Laplace’s equation

b) is always stable

c) is a method of solving only sparse matrix equations

d) is a method of solving any matrix equation

e) is only stable for a value of the relaxation parameter  chosen greater than 2.

f) none of the above.

3. The difference equation:

for the grid function given by  is:

a) a second-order accurate approximation to the derivative of  with respect to space at time 
and spatial point 

b) a first-order accurate approximation to the derivative of  with respect to space at time 
and spatial point 

c) a first-order accurate approximation to the derivative of  with respect to space at time 
and spatial point 

d) a first-order approximation to the second derivative of  with respect to space at time  and
spatial point 

e) none of the above.

4. The difference equation: 

for the grid functions given by  and is:

a) a second-order accurate approximation to Laplace’s equation: 

b) a first-order accurate approximation to Laplace’s equation: 

c) a second-order accurate approximation to Poisson’s equation: 

d) a second-order accurate approximation to Poisson’s equation: 

e) none of the above.
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5. If we apply the finite element method to the problem defined as:

, , , on the interval 

using linear basis functions, , on the two elements defined by  and  then
the approximate value of  we will obtain is

a) b) 

c) d) 

e)

f) none of the above.

6. The notation  where  is a difference
formula, means that

a)  can always be effectively used to approximate the derivative  in the
finite difference solution of a differential equation.

b) as the time-step  goes to zero the term  goes to zero.

c)  goes to zero faster than  goes to zero.

d)  with finite  for any .

e) if we do our calculations with at least three significant digits then we will have an exact
approximation of the derivative.

7. Assume we have been given a finite difference approximation of a partial differential equation for the
dependent variable  and have been told that it is of order . The grid function is
denoted  and the grid spacings  and  are not functions of position (i.e., we have
a uniform grid). Which of the following are true?

a) If we reduce  by a factor of two then the error in the grid function will go down by a factor of two.

b) If we reduce  by a factor of two then the error in the grid function will go down by a factor of
four.

c) If we reduce  by a factor of two then the error in the grid function will go down by a factor of two.

d) If we reduce  by a factor of two then the error in the grid function will go down by a factor of four.

e) If we reduce both  and  each by a factor of two then the error in the grid function will go down
by a factor of four.

8. Assume we have been given a finite difference approximation of a partial differential equation for the
dependent variable  and have been told that it is of order . The grid function is
denoted  and the grid spacings  and  are not functions of position (i.e., we have
a uniform grid). Which of the following are true?

a) If we reduce  by a factor of two then the error in the grid function will go down by a factor of two.

b) If we reduce  by a factor of two then the error in the grid function will go down by a factor of
four.

c) If we reduce  by a factor of two then the error in the grid function will go down by a factor of two.

d) If we reduce  by a factor of two then the error in the grid function will go down by a factor of four.

e) If we reduce both  and  each by a factor of two then the error in the grid function will go down
by a factor of four.

9. If we use Simpson’s rule to integrate  over the interval  using 4 intervals
the answer will be:

a) b) c) d) e) 
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10. Given the right-angle equilateral triangular element of area  with node
numbers as shown, the first-order elemental stiffness matrix associated with
it when using the finite element method to solve the Laplace equation is given
by

a) b) 

c) c) d) 

e)

f) none of the above

11. Given the two triangular elements with global node numbers as shown, and
first-order elemental stiffness matrices given as

 and 

where the local numbering is counter-clockwise starting at the left-most lower node of each triangle,
these will contribute to the global stiffness matrix as

a) b) 

c) d) 

f) none of the above

12. In general, the finite element method cannot be used to solve non-linear electromagnetic field problems:

a) the above statement is True b) the above statement is False
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13. The second-order Mur absorbing boundary conditions:

a) can only be used with the Yee FDTD algorithm

b) are second order accurate in both space and time

c) absorb any dispersion which occurs in FDTD

d) can be used with both the scattered field formulation and the total field formulation of FDTD

e) can be effectively used to truncate a finite element solution of the Laplace equation

f) none of the above

14. The second-order Mur absorbing boundary conditions:

a) cannot be used at the corners of a three-dimensional grid

b) can only be used for three-dimensional FDTD solutions of Maxwell’s equations

c) completely absorbs electromagnetic plane waves incident from any angle

d) none of the above

15. Which of the following are examples of valid FDTD grids:
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16. Consider the linear operator equation

, 

where  is given and we are asked to find an approximation to . We can begin to solve this
problem as follows. We first expand  as a sum of basis functions, :

where we now need to determine the coefficients . We can then substitute this expansion into the
operator equation to get

. (1)

This gives us one equation in  unknown coefficients. Which of the following statements are true:

a) If we take the inner product of equation (1) with any  arbitrary weighting functions we can always
find a solution for the coefficients .

b) If we take the inner product of equation (1) with  Dirac delta functions  with  unique
values of , this is called Point-Matching or Collocation, and is a standard Method of Moments
technique.

c) We can try to minimize the Euclidean norm of the residual

by varying the coefficients  as parameters in the minimization. This is equivalent to using the

complex conjugate of  as weighting functions. That is .

d) The least-squares method is the same as Galerkin’s Method.

e) If the basis functions are sub-domain (basis functions) then the weighting functions in the Method
of Moments must also be sub-domain (weighting functions).

f) The Method of Moments can only be used with self-adjoint operators but the operator doesn’t
necessarily have to be positive definite.

g) If the operator is self-adjoint and positive definite then the Galerkin method is equivalent to the
Finite Element technique as long as the basis functions are not in the null-space of the operator (i.e.,
as long as  for arbitrary ).

h) Antenna problems cannot be solved using the Finite Element technique because it can only be used
to solve differential equations and not integral equations.

i) If we use the Method of Moments to solve scattering problems formulated in terms of integral
equations then when we change the angle of the incident plane wave we must re-calculate the matrix
elements and re-invert the matrix.

j) The Successive Over-Relaxation method cannot be used with the Method of Moments.

k) Every Method of Moments solution of a partial differential equation problem has an equivalent
finite difference formulation.

l) If the basis functions in the Method of Moments are sub-domain basis functions then the
coefficients in the expansion

correspond to values of the unknown function at the node points which define each sub-domain.

m) Pocklington’s Integro-differential equation cannot be solved using the Method of Moments and that
is why we convert it to Hallén’s integral equation.

n) The Method of Moments cannot be used on triangular grids in two-dimensions.
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17. When we use the Rao-Wilton-Glisson elements for
scattering problems, we define edge-based vector basis
functions as follows (see Figure 1):

where  and  are position vectors with respect to the
free nodes of triangles  and , respectively. If for a
particular triangulation of a flat plate lying in the xy-
plane we have edge 1 associated with the two triangles
as shown in Figure 2, then  is given by:

a)

b) c)

d) e)

f) none of the above.

18. The Rao-Wilton-Glisson vector basis functions given above are used to expand the surface current on
the scattering object:

.

The charge density on each triangle is given by . For the triangulation shown in
Figure 2 above, which of the following statements are true?

a) The total charge in triangle  is the same as the total charge in triangle .

b) The total charge in triangle  has the same magnitude but opposite sign as the total charge in
triangle .

c) The total charge in each triangle is always zero.

d) The magnitude of the total charge in each triangle will be .

e) The magnitude of the total charge in each triangle will be .

f) The charge density in each of the triangles  and  is constant over each triangle and the same
in each triangle and this is why there is no line charge on edge 1.

g) The normal component of surface current on each side of the edge is the same and this is why there
is no line charge on edge 1.

h) Basis function  has a small but finite component normal to edge 2.

i) If edge 2 is a boundary edge on the scatterer then the tangential component of the surface current
will automatically be zero.
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j) The charge density in triangle  has the same magnitude but opposite sign as the charge density
in triangle  and this is why there is no line charge on edge 1.

19. Consider the recursion formula ,  as an approximation to the integral

The reason this is not a good formula is that:

a) it is unstable, the round-off error gets multiplied by 5 at each step.

b)  has been approximated and therefore has round-off error.

c) the truncation error is too high.

20. Consider the use of orthonormal eigenfunctions as whole-domain basis functions, , in the Galerkin
method to find the solution to

, 

with  and  given. With orthonormal eigenfunctions we have 

 and .

 The coefficients  in the approximate solution

 

will be given by

a)

b)

c) solving the matrix equation  where .

d) solving the matrix equation  where 

and .

e) none of the above.

21.  Consider the 1-D transmission line equations written in conservation-law form:

where the solution vector u is given by

, and , , .

and  is the per-unit-length capacitance and  is the per-unit-length inductance of the line. The
parameter  is the phase velocity for waves propagating on the line. If we use the Yee algorithm
for this system, it will be stable
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a) if we choose b) if we choose 

c) only if we choose d) if we choose 

e) for all choices of , i.e., the scheme is unconditionally stable.

22. Given a matrix equation  where  is a square matrix,  is a column vector, and  is the column
vector we are trying to find, we can write an iterative scheme as

, .

Recall that if  is the diagonal part of  we call this iterative scheme the Jacobi method, if  is the
lower triangular part of  (including the diagonal) we call the iterative scheme the Gauss-Seidel
method, and if  is the lower triangular part of  with the diagonal elements divided by a parameter

, called the relaxation parameter, then the iterative scheme is called the successive overrelaxation
method. Other schemes written as above are possible. Which of the following statements are true:

a) if the spectral radius of  is less than one then the iterative scheme for any  will be stable.

b) if the spectral radius of  is less than one then the iterative scheme for such  that
satisfies this equation will be stable.

c) the spectral radius of  and  must both be less than one for the iterative scheme
to be stable.

d) the stability of the iterative scheme depends on the initial guess .

e) the stability of the iterative scheme does not depend on the initial guess .

f) the error in the initial guess is given by  and after  iterations the error will be given
by .

g) the error in the initial guess is given by  and after  iterations the error will be given
by .

h) the error in the initial guess is given by  and after  iterations the error will be given
by .

23. Given the second-order triangular element with nodes as shown
what is an appropriate second order polynomial basis function
over this element such that the basis function is equal to 1 at the
node located at ,  and zero at all remaining nodes.

a)  with

b)  with
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y
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0

x 4= y 3=
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e

f
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0

0
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0
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c)  with

d)  with

e)  with  the area coordinate for the node located at , .

f)  with  the area coordinate for the node located at , 

and  the area coordinate for the node located at , .

g)  with  the area coordinate for the node located at , 

and  the area coordinate for the node located at , .

h)  with

i)  with

24. Which of the following statements regarding the finite difference method are true:

a) the stability of a finite difference approximation of Maxwell’s equations in the time-domain can be
determined using the von Neumann method without regard to the way the boundary conditions are
approximated.

b) von Neumann’s method can be used to evaluate the stability of the finite difference approximation
of the boundary conditions.

c) von Neumann’s method tells us that the leap-frog scheme is always stable.

d) von Neumann’s method cannot be applied to the leap-frog scheme because it is a two-step scheme.
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f
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e) von Neumann’s method only gives us the amplification matrix for the scheme and tells us nothing
about its stability.

25. In the scattered field formulation of FDTD applied to perfect electric conducting shields in free space:

a) the incident plane wave is modelled using electric surface currents on the shield.

b) the incident plane wave is modelled using magnetic surface currents on the shield.

c) the incident plane wave is modelled by imposing the tangential electric field on the shield.

d) the incident plane wave is modelled by imposing the tangential magnetic field on the shield.


